相关产品

    暂时没有数据

联系我们

  • 地址:安徽省合肥市安巢经开区花山工业园
  • 邮编:238000
  • 电话:15958113624
  • 邮箱:sales@ahhh-kj.com

气凝胶超级防爆性能及其应用

文章出处:本站    人气:30797    发表时间:2018-10-18 16:49:13

为何这种与钢铁相比看似脆弱的材料却有着防爆减震的功能,玻璃纤维和碳纤维增强的气凝胶材料属于多孔材料, 其显著特征在于内部存在大量孔隙, 在冲击波作用下材料先被压缩致密。泡沫材料变形般经历三个阶段: 弹性段、屈服段、压实段。先孔壁发生弹性变形, 部分冲击能量转变为弹性能, 同时气隙被热压缩并吸收部分能量; 继而孔壁发生塑性塌缩或脆性破碎, 将部分冲击能量转变为塑性能, 气隙热压缩过程基本结束, 随后被逐渐压实直至接近密实材料。旦多孔材料被完全致密, 冲击波在其中的传播行为与相应密实材料基本相同。这时气凝胶胶体粒子高速碰撞, 胶体粒子之间的碰撞力增大, 也导致气凝胶结构破坏。 孔壁受到的横向张应力升高和胶体粒子之间高速碰撞共同作用, 导致气凝胶在动态压缩过程中出现“粉碎”的现象,表明冲击波在多孔材料中的传播衰减效应很大程度上取决于致密过程各阶段所吸收或耗散的能量。

而这种吸收和消耗爆炸冲击波能量可由以下原因来解释:由于气凝胶中的孔洞为纳米级别,所以气凝胶的渗透率低。在爆炸高速冲击过程中,气凝胶中的气体在瞬间难以逸出,气体分子之间以及气体分子与孔壁之间发生剧烈的碰撞。 空气分子的分子平均自由程( 个空气分子与其它空气分子相继碰撞两次之间所走路程的平均值) 为70 nm,实验使用的气凝胶的平均孔径为16.9 nm.由于气凝胶孔壁与孔内空气分子之间的距离要远小于空气分子平均自由程, 并且气凝胶的比表面积大, 所以空气分子与孔壁碰撞的概率要远高于与空气分子相互碰撞的概率。在高速压缩过程中,空气分子与孔壁之间的碰撞要比空气分子之间的高速碰撞更加剧烈。气体与孔壁碰撞引起的流动阻力以及气孔中空气分子之间的碰撞阻力会导致气孔内压力的增大,纳米级孔洞中的空气在瞬间难以逸出,导致气孔内压力增大以及能量消耗。材料变形越快,气体分子往外逸出越困难,孔洞内压越高,消耗的能量越多。由于气孔内部各个方向上的应力近似相等,所以气凝胶内的气体将轴向的压应力转化为各个方向上的应力,即气凝胶内的应力状态发生改变。气凝胶内应力增大到定程度导致气凝胶的爆炸并造成能量的损失。材料变形越快,气孔内的压力越高, 消耗的能量就越多。

在气凝胶爆炸过程中会产生纤维拔出和纤维断裂的现象, 同时也消耗了大量的能量,纤维对气凝胶的增韧作用导致气凝胶的爆炸需要更大的内应力,从而延缓了气凝胶的爆炸使气凝胶在爆炸时需要消耗更多的能量,这就使爆炸冲击波的能量被大量消耗从而起到了装甲防护作用。

在二氧化硅气凝胶中冲击波的强度随传播距离的增加呈现指数衰减的趋势。冲击波在二氧化硅气凝胶中衰减比在泡沫铝中衰减明显。由于二氧化硅气凝胶内部特殊的纳米多孔网状结构,导致冲击波在二氧化硅气凝胶中的衰减效果较好。冲击波在二氧化硅气凝胶中的传播速度低,因此冲击波在二氧化硅气凝胶中传播时卸载波的追赶卸载效应非常明显,这又进步有利于了冲击波的衰减。气凝胶防爆性能及其应用。

气凝胶

气凝胶


相关产品
    暂时没有数据